What are Grids?

A discussion on grids and gridded census data.

New York SDC meeting October 19th, 2023 Shonin Anacker Geography Division US Census Bureau

Gridded Census Datasets

- Researching a new data product.
- Initial development stage.
- Gathering data user input.

Project Overview

Purpose:

- Expand our available product portfolio to **meet changing demands**.
- More accessible, interoperable, and relevant data.
- Producing **new and innovative** Census data products.
- Fulfillment of mission needs and **meeting stakeholder requests**.
- Creating quality products to ensure we meet today's data demands.
- Providing tools to **support informed, timely decisions**.

Expectations:

- Gridded data products will be in addition to current administrative/statistical units.
- We will produce gridded data products as a standard annual public delivery.

What are grids?

- Grids are characterized by a pattern of regular repeated shapes that fit together without gaps or ⁴ overlaps.
- Can be any shape that does not create gaps or overlaps, such as squares, rectangles, triangles, quadrilaterals, or hexagons.
- GEO has received inquiries from external partners for Census data provided in a gridded format.
- **Grids have several advantages** in comparison to administrative units.

Rhode Island Housing Unit Counts

Earbes Ph D 2022-02-23

What are gridded data?

- Gridding data is to assign data values to grid cells.
- Grids are always aggregates because they use single values to describe (represent) a two-dimensional area of the Earth's surface.
- Examples:
 - Counts (number of housing units)
 - Sums (economic output in dollars, expected crop yield)
 - Averages (temperature, rainfall, property value)
 - Other (Ranks, presence/absence, etc)

Grids Advantages

- Uniform area (densities).
 - Uniform area supports comparative analysis.
- Consistent and unchanging.
 - Supports change detection and time series analyses.
- Easily integrated with other gridded data.
 - Provide better support for disaster response.
- Provide an alternative to (but **do not replace**) administrative/statistical boundaries.
- May assist in **small area analysis** and estimation.
 - Regions of interest are more easily defined and remain consistent.
- Potential to serve as consistent work units for internal data processing or sampling.

Where is "Here"? Part 1

- Sometimes this question can be meaningfully answered with a word linked to an administrative or statistical boundary (e.g. "here in Maryland", "here in Philadelphia", "here in Census tract 7").
- But sometimes those units aren't appropriate because:
 - boundaries may have <u>changed</u> (illusory stability—in fact <u>change</u> is the norm for administrative units);
 - <u>comparisons</u> are difficult or hard to intuitively grasp owing to units radically different physical areas;
 - these units do not actually encapsulate the spatial extent of many important <u>events and phenomena</u>.

Boundary Changes

Historical population		
Census	Pop.	<u>%±</u>
1890	779	_
1910	742	_
1920	744	0.3%
1930	606	-18.5%
1940	874	44.2%
1950	888	1.6%
1960	1,023	15.2%
1970	1,629	59.2%
1980	2,093	28.5%
1990	2,225	6.3%
2000	5,314	138.8%
2010	28,016	427.2%
2020	45,697	63.1%
2022 (est.)	57,470	25.8%
U.S. Decennial Census ^{[16][failed verification]} 2020 ^[3]		

"Kyle, TX": 2010

"Kyle, TX": 2020

Where is "Here"? Part 2

- Sometimes this question can meaningfully be answered by referring to a coordinate or location.
- But sometimes coordinates are not appropriate or workable because:
 - Continuous nature of coordinate data can make for expensive computation.
 - Integration of different datasets in this format can be difficult.
 - Coordinates do not allow for representation of zero or null value areas.
 - It is much easier to find patterns and meaning (defining "here") at the human scale by treating events as impacting small areas such as grid cells.

Size: 200m-5km Grids are Human Scale

International Comparisons

Figure 5. Population Density 1km² Grid 2011 - Sydney and London

Comparisons Over Time

Representing Null or Zero Values

Current Work

- Engaging with the statistical community.
 - Disclosure avoidance planning.
 - Statistical content discussions.
- Integrating grids into existing production processes.
- Developing testing and quality control procedures.
 - Identify best practices for process and product metrics.
- Planning for storage and serving grids to the public.
 - Formats (geopackage, shps, raster vs. vector, etc.)
 - Have yet to prototype/test raster formats in MTDB.
 - Tiling.
 - How many versions of grids do we support?
- Staffing and resource planning.
 - How many staff are required for these activities?

Key Questions for our data partners!

- How should we communicate with YOU, our data users to solicit input?
- We want your feedback on data use-cases and requirements:
 - Statistical data (contents) -
 - What census and survey data should be disseminated?
 - Decennial Census Data? American Community Survey data? Economic data?
 - Minimal vs. maximal datasets
 - What's does the "minimum viable dataset" look like for your needs?
 - Integration of other datasets what would you "mashup" with census data?
 - Geospatial formats and preferences (container) -
 - Raster vs Vector.
 - Shape and Size(s) of Grid Cells.
 - Equal area vs equal dimensions.

Discussion

Current grids

- Do agencies in your state use gridded data?
- If yes, what kind of gridded data?
 - Earth Observation/Remotely Sensed/Satellite Imagery
 - Elevation data
 - Land Use/Land Cover data
 - Transportation/Traffic
 - Population/Housing/Demographics

Grids – geospatial

- For those that use grids, what type of grid are you using?
 - Raster data?
 - Shape
 - Rectangle/quadrilateral? Hexagonal?
 - Size?
 - 1km? 5km?
 - Existing standard (e.g. DGGS or National Grid) or selfgenerated grid?

Grids – use-cases

- If we produced grids, how would you use them?
- What use cases do you have for grids?
- What statistical data might be useful in a grid?

Grids – comparative geographies

- What is the smallest geography you frequently use?
 - Tracts? Block groups? Blocks? Other?
 - What statistical data do you use with these geographies?
 - Demographic/Housing characteristics or counts.
 - Business, Jobs, Employment characteristics or counts.
 - Socio-economic characteristics or counts.
 - Other?
 - What drawbacks or limitations do you find with these geographic units?

Final Discussion

- What final thoughts do you have about grids?
- What are your gridded data needs?
- What requirements would you like to communicate to us?
- Please share any final thoughts with us at geo.grids@census.gov

DGGS Advantages

- Each cell has unique address (vs continuous coordinate systems).
- Greatly simplifies the definition of "here" in studies.
- Data of any type can be held in these cells.
- Integration of data is on-demand and virtually free (computationally).
- Cells are hierarchically organized allowing for rapid aggregation and decomposition.
- Works at every latitude including polar regions.
- OGC DGGS suite is leading candidate for adoption as <u>global</u> standard.