

Increase the Minimum Threshold to Qualify as an Urban Area

Total housing units <u>or</u> population

1

Cease
Distinguishing
Different Types of
Urban Areas

2

Reduce the Maximum Distance of Jumps

3

No Longer Include Low Density Hop or Jump "Corridor" in the Urban Area

4

Adoption of
Housing Unit
Density Threshold
for Qualification of
Census Blocks

5

Use of LEHD data for Splitting Agglomerations

6

1 Increase the Minimum Threshold to Qualify as an Urban Area

OR

Population: 10,000

Housing Units: 4,000

2 Cease Distinguishing
Different Types of Urban Areas

Urban Clusters: Urban Areas with population of 2,500 to 49,999

Urbanized Areas: Urban Areas with population of 50,000 or more

- **3** Reduce the Maximum Distance of Jumps
 - From 2.5 miles back down to <u>1.5 miles</u>
 - Extended to 2.5 miles in 2000
 - Impervious surface added in 2010
 - Combination led to overbounding in 2010
 - Excluded territory still extends hops and jumps to maximum of 5 miles
 - Water and wetlands

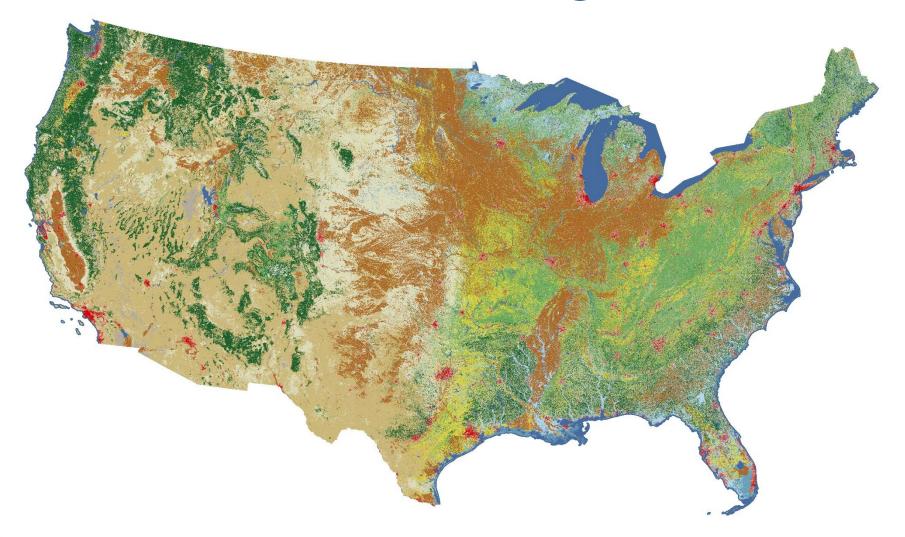
- 2010 Jump Blocks
- 2010 Qualified Urban Blocks

5 Adoption of Housing Unit Density Threshold for Qualification of Census Blocks

385 housing units (occupied or vacant) per square mile

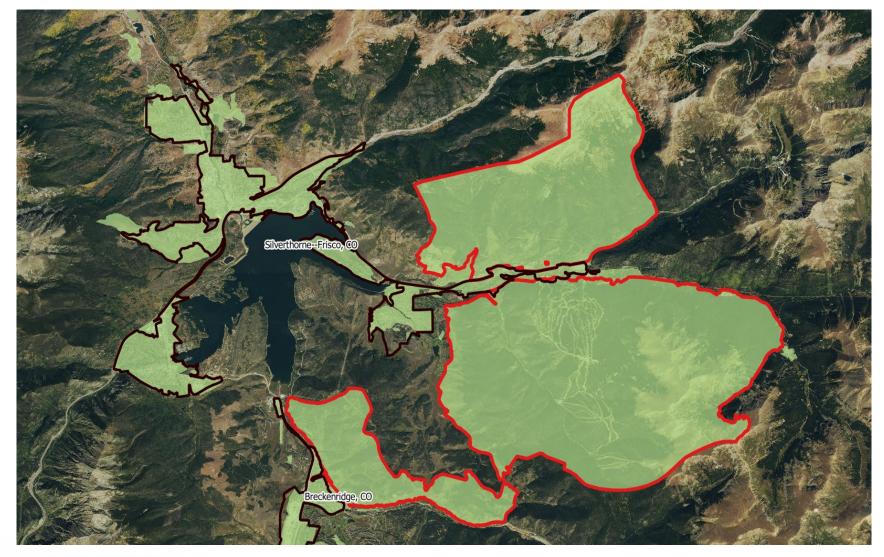
Equivalent to 1 housing unit per 1.6 acres

Equivalent to approximately 1,000 persons per square mile


More direct measure of developed landscape

Ability to update extent of Urban Areas between censuses

Census block-level housing unit counts are invariant


Possible Criteria Changes: NLCD

New National Land Cover Database (2019) released since Proposed Urban Area Criteria was published

Possible Criteria Changes: Group Quarters

The proposed criteria specified automatically qualifying blocks with Group Quarters as urban if they were adjacent to already qualified urban area. During criteria testing, this led to large blocks with low housing and population expanding the urban areas, sometimes by miles. Further testing is continuing.

Possible Criteria Changes: Minimum Threshold

Minimum Urban Area Qualification:

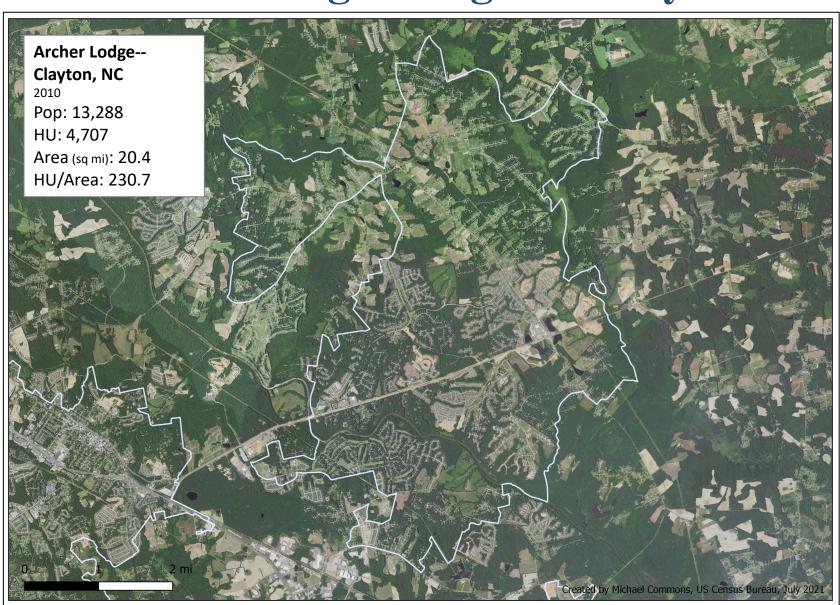
5,000 Persons or 2,000 Housing Units

Oxford, NC

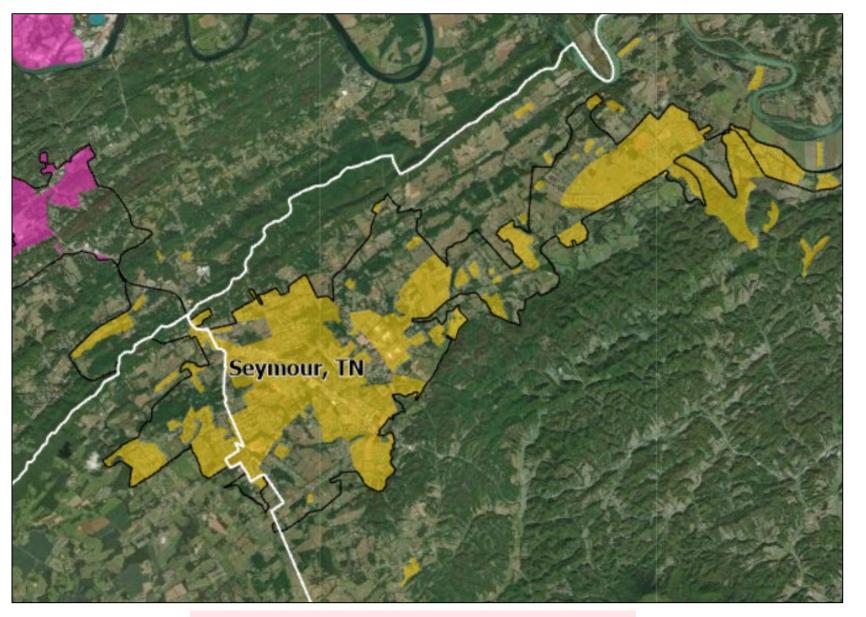
Dense "downtown" core surrounded by lower density development

Avg. HU/Area 2010 UA = 725

Possible Criteria Changes: High Density Cores


Minimum Urban Area Qualification:

5,000 Persons or 2,000 Housing Units


Archer Lodge – Clayton, NC
No dense core. Suburb of
Raleigh, mostly made up of
subdivisions

Avg. HU/Area 2010 UA = 725



Density Classes

HU/Acre	Acres/HU	HU/Sq mi	Pop/Sq mi	Acres/Pop	Pop/Acre
2.00	0.5	1,280	3,328	0.19	5.20
1.00	1.0	640	1,664	0.38	2.60
0.67	1.5	427	1,109	0.58	1.73
0.60	1.7	385	1,001	0.64	1.56
0.50	2.0	320	832	0.77	1.30
0.40	2.5	256	666	0.96	1.04
0.33	3.0	213	555	1.15	0.87

Density Classes

HU/Acre	Acres/HU	HU/Sq mi	Pop/Sq mi	Acres/Pop	Pop/Acre	
2.00	0.5	1,280	3,328	0.19	5.20	
1.00	1.0	640	1,664	0.38	2.60	
0.67	1.5	427	1,109	0.58	1.73	
0.60	1.7	385	1,001	0.64	1.56	
0.50	2.0	320	832	0.77	1.30	
0.40	2.5	256	666	0.96	1.04	
0.33	3.0	213	555	1.15	0.87	

Degrees of Urbanisation

Extensions to level 1 of the classification

7

Figure 7.1 provides a simplified and schematic overview of level 2 of the degree of urbanisation classification.

Figure 7.1: Schema for the grid cell classification for level 2 of the degree of urbanisation classification

		Population siz	e thresholds of the (settlement size)	cluster of cells	No population size criterion
		≥ 50 000	(not a settlement)		
of cells, km²	≥ 1 500	Urban centres	Dense urban clusters		
sity	≥ 300		Semi-dense urban clusters (¹)	Rural clusters	Suburban or peri-urban grid cells
Population den inhabitants	≥ 50				Low-density rural grid cells
Popul	< 50				Very low-density rural grid cells

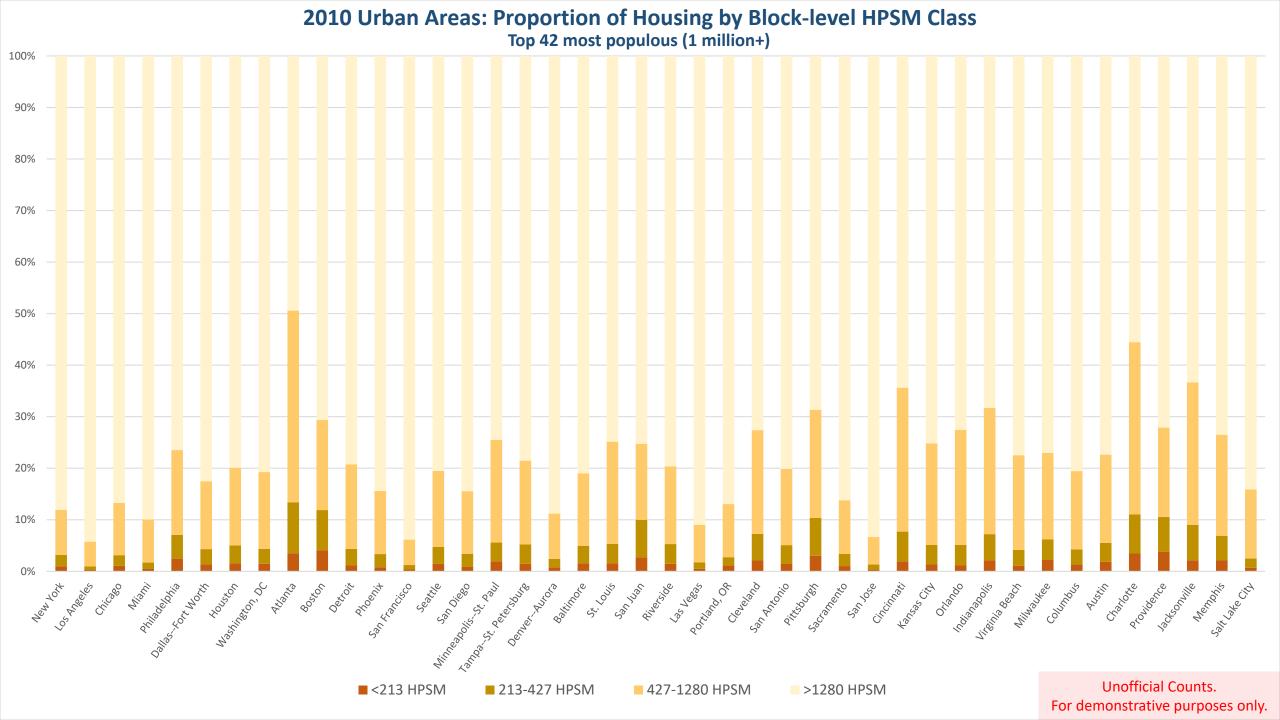
(1) Semi-dense urban clusters can have a population of more than 49 999.

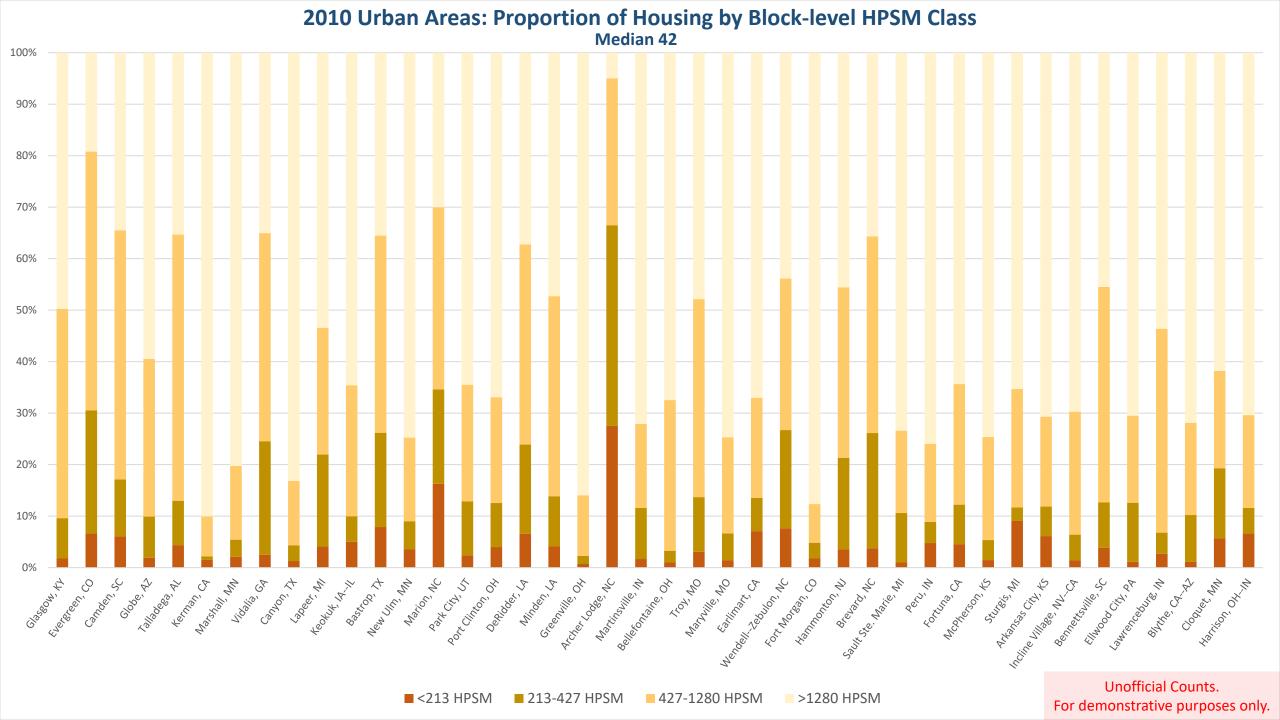
	Pop/KM^2	Min Pop	PPSM	HPSM*
Urban Centre	1,500	50,000	3,885.0	1,494.2
Urban Cluster	300	5,000	777.0	298.8

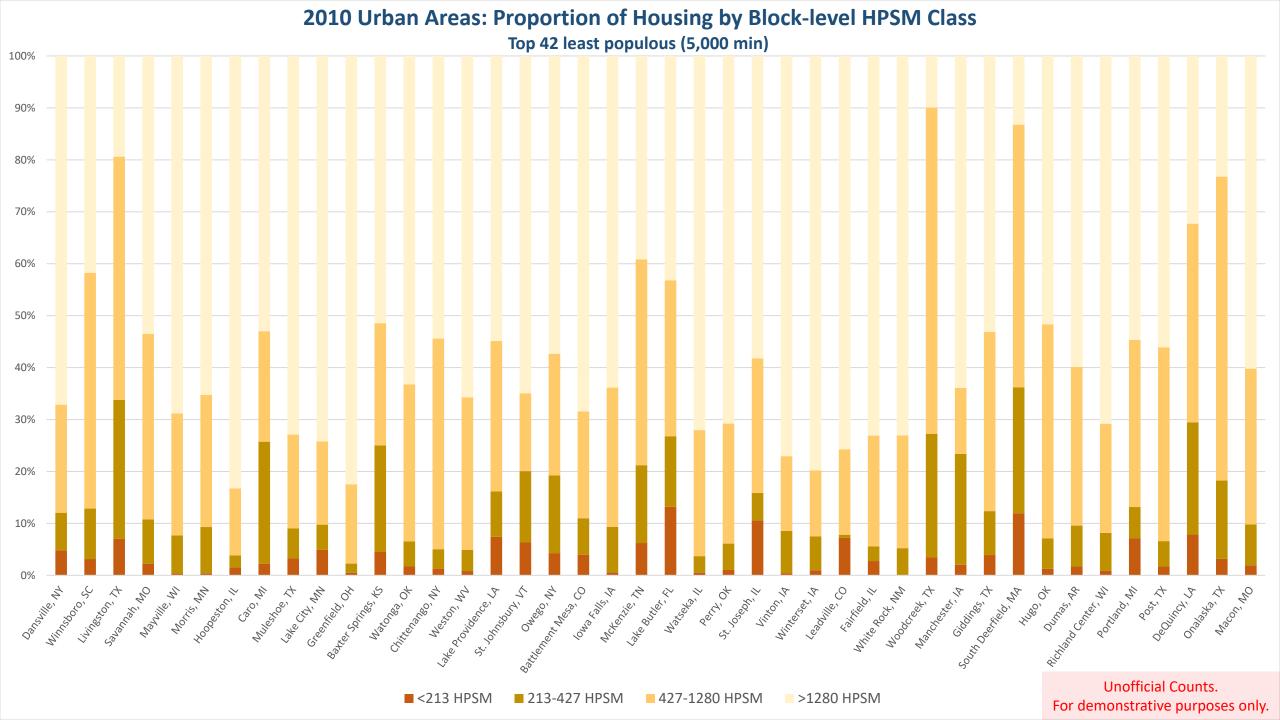
Applying the Degree of Urbanisation

A METHODOLOGICAL MANUAL TO DEFINE
CITIES, TOWNS AND RURAL AREAS
FOR INTERNATIONAL COMPARISONS

2021 edition







2010 Urban Areas: Proportion of Housing by Block-level HPSM Class Top 42 least populous (2,500 min) 100% 90% 80% 70% 60% 40% 30% 20% 10% A House of the American of the W No state of the S. Johnson Wilmosollo il v Willows of the Williams Solito A Market Sh the or of the THE THE PERSON OF THE PERSON O Citado & W Subst **Unofficial Counts.** <213 HPSM ■ 213-427 HPSM 427-1280 HPSM >1280 HPSM For demonstrative purposes only.

Primary Core 1280 HPSM & Impervious

500+ Total HU

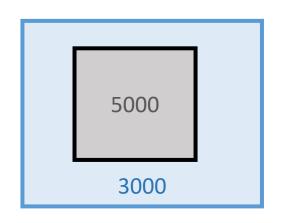
Secondary Core 427 HPSM & Impervious

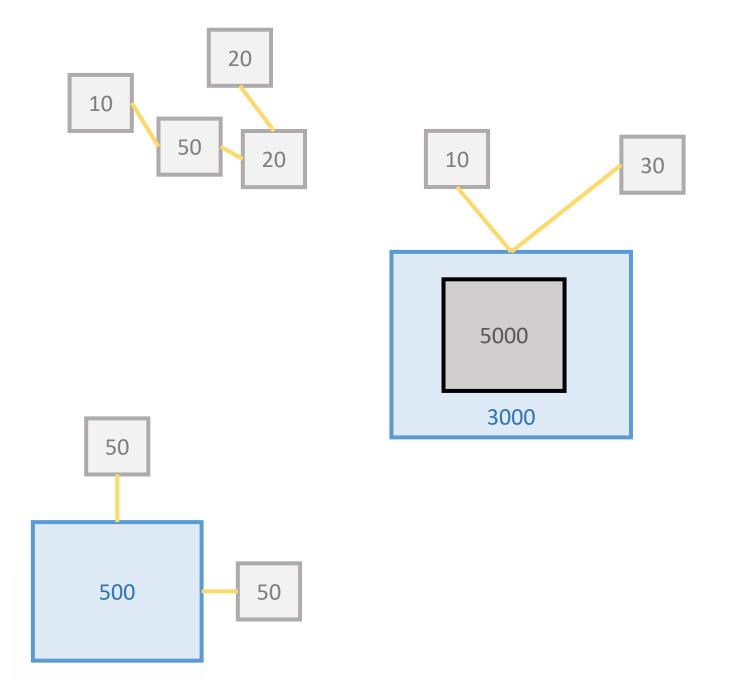
500+ Total HU

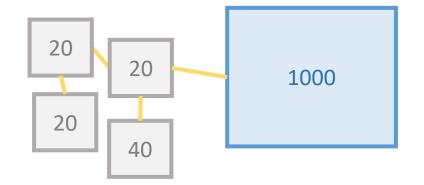
Hop/Jump Core 427 HPSM & Impervious

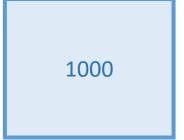
10+ Total HU

Final Fill 213 HPSM **Hop Connection**

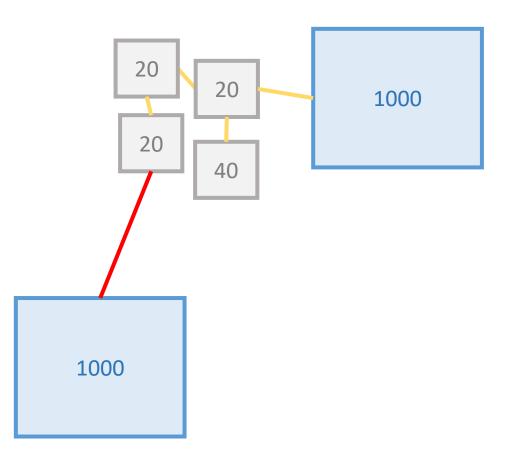

Jump Connection

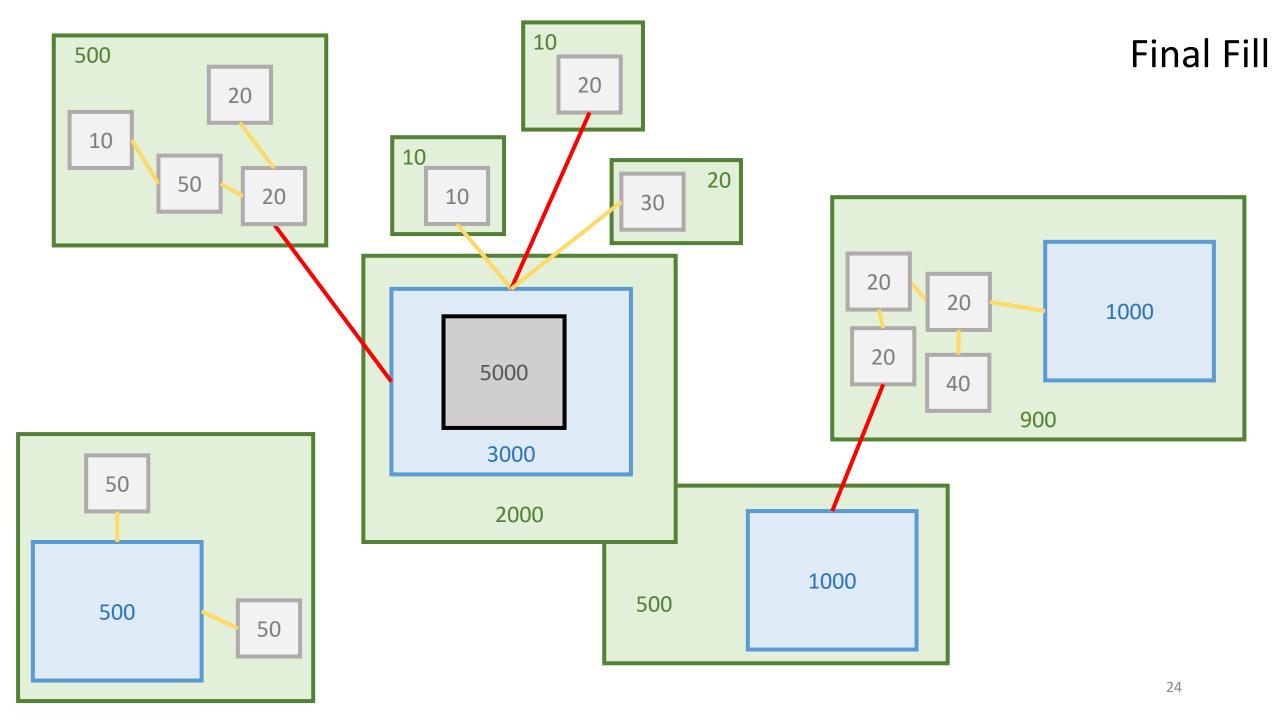

Primary Cores

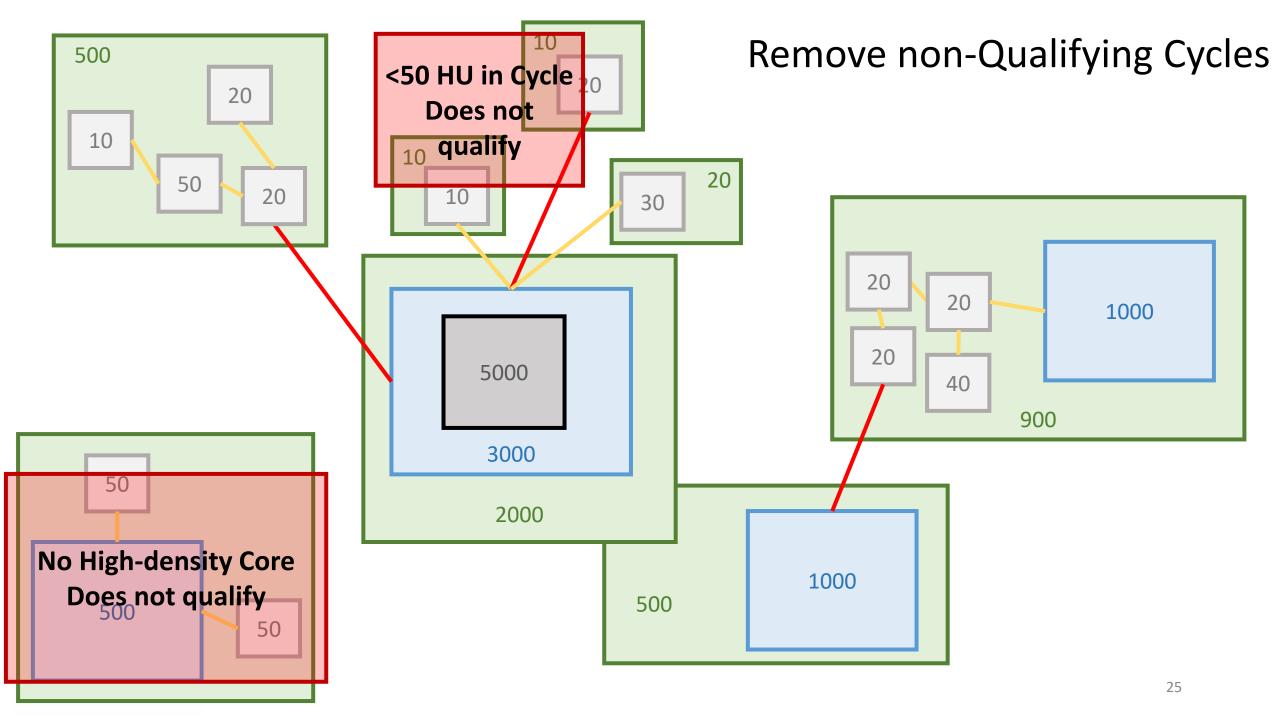


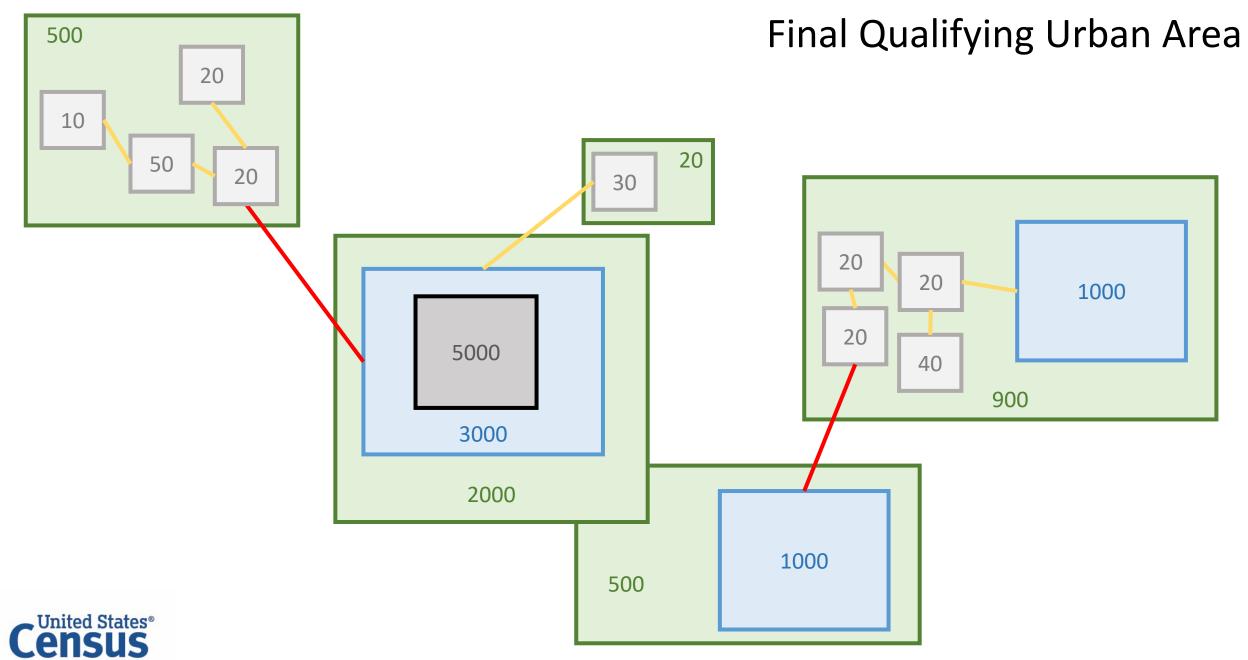

Secondary Cores

Hop Cores and Connections

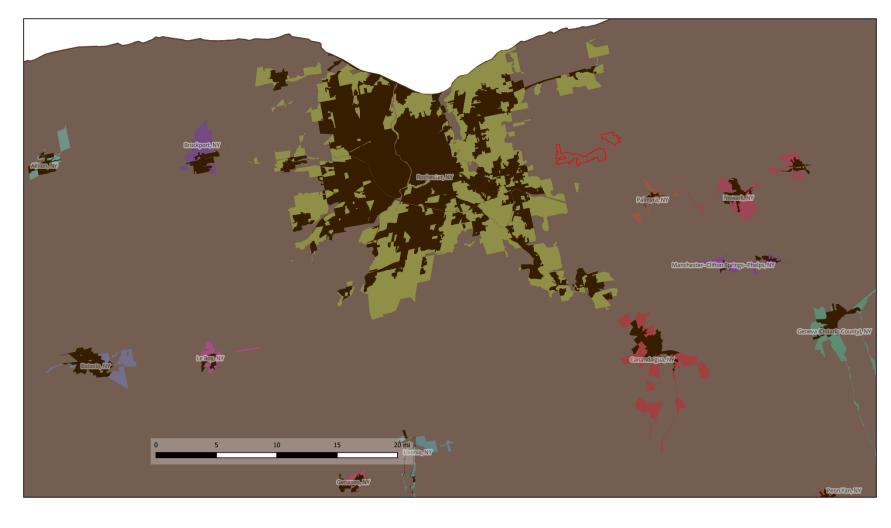




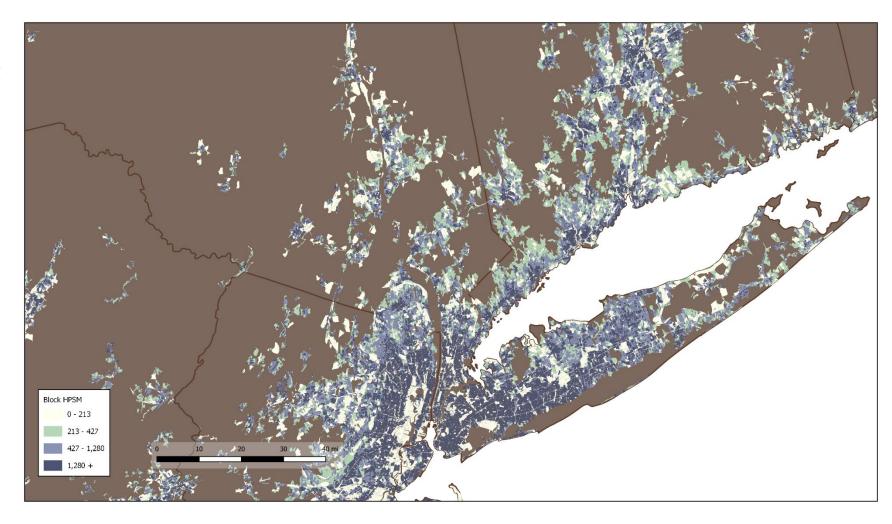




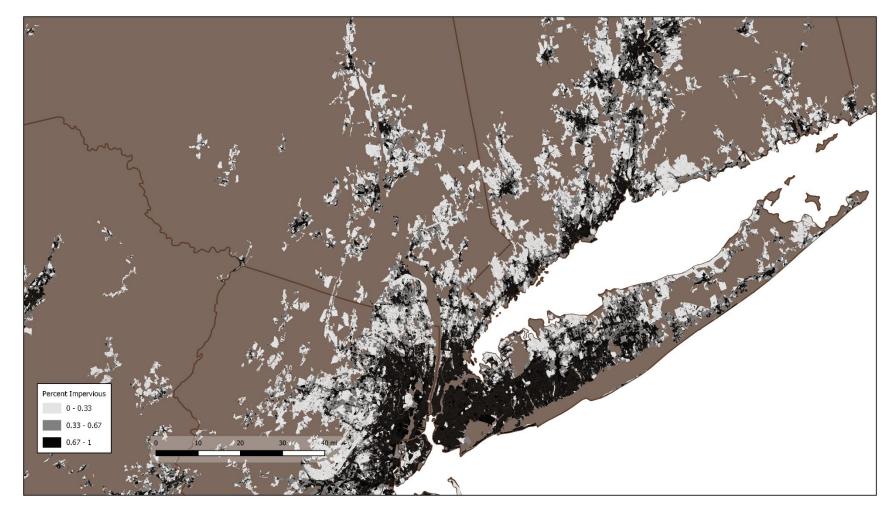
Jump Cores and Connections


Parameterized Urban Area Criteria

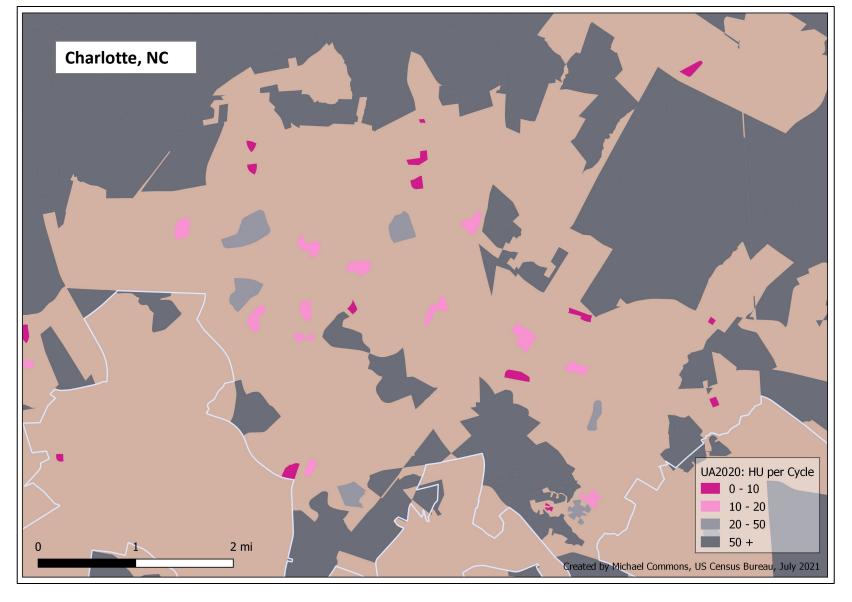
Criteria	2010 Final	2020 FRN-Proposed	2020 Testing
Minimum Threshold for UA Qualification	2,500 persons	10,000 persons OR 4,000 HU	5,000 persons OR 2,000 HU
Minimum Threshold for Block Qualification*	1,000 PPSM and 500 PPSM	385 HPSM	1280 HPSM, 487 HPSM, 213 HPSM
Minimum Threshold for Core to be Hopped from	1,000 persons	385 HU	500 HU
Minimum Threshold for Core to be Jumped from	1,500 persons	577 HU	500 HU
Maximum Jump Distance	2.5 Miles	1.5 Miles	1.5 Miles
Hop and Jump "Corridors"	Included	Not included	Not included
Minimum Threshold for Final Cycle Inclusion	n/a	1 HU	50 HU


^{*} Impervious surface qualification is consistent for all criteria

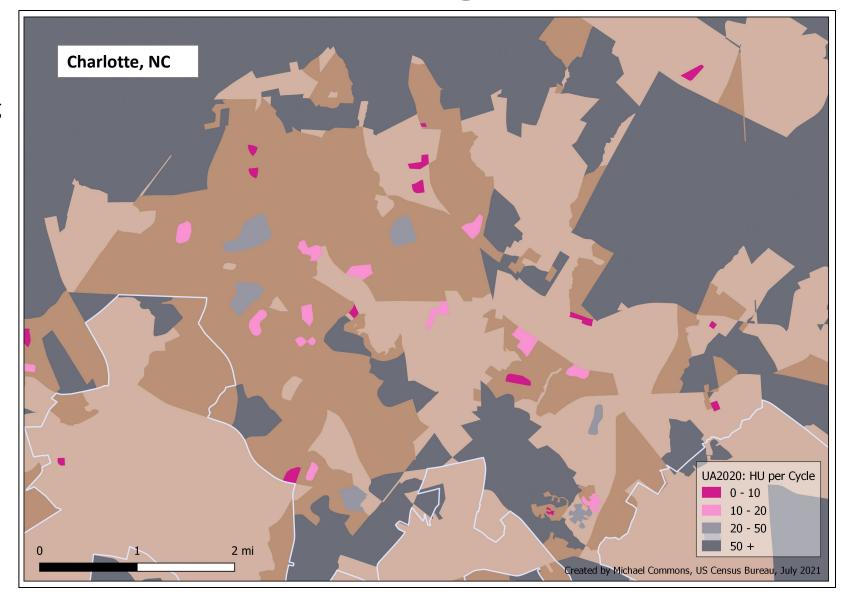
- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units



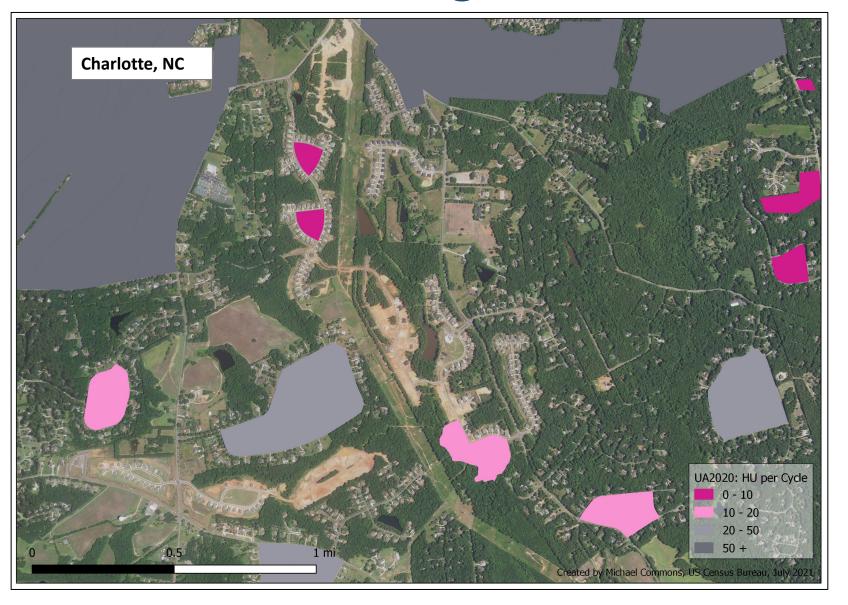
- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units



- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units



- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units



- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units

- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units

- Minimum Urban Area Qualification
 - 5,000 Persons or 2,000 Housing Units
- High Density Cores
 - 1,280 HPSM (0.5 acres per HU)
 - 500 Persons
- Secondary Cores
 - 427 HPSM (3 acres per HU)
- Final Fill
 - 213 HPSM (3 acres per HU)
- Minimum Cycle Size
 - 50 Housing Units

Reduce the Number of Cycles per Urban Area

2020 FRN	Updated Test Criteria						Impact of Update						
UA	POP	HU	AREA	CYCLES	UA	UA POP HU AREA CYCLES P							CYCLES
Charlotte, NC	1,455,923	770,820	781.2	515	Charlotte, NC	1,478,343	782,530	855.0	62	1.5%	1.5%	9.4%	-88.0%
Raleigh (Wake County) Durham (Durham County) Cary (Wake County), NC	1,108,168	623,186	520.8		Raleigh (Wake County) Durham (Durham County) Cary (Wake County), NC	1,157,114	647,009	605.3	53	4.4%	3.8%	16.2%	-81.8%
Nashville-Davidson metropolitan government (balance), TN	1,048,952	587,129	530.4		Nashville-Davidson metropolitan government (balance), TN	1,096,300	610,114	602.6	35	4.5%	3.9%	13.6%	-86.3%
Memphis, TN	856,995	397,778	314.5		Memphis, TN	879,429	407,161	338.5	11	2.6%	2.4%	7.6%	-73.2%
GreensboroWinston-Salem, NC	776,147	392,002	420.1	329	GreensboroWinston-Salem, NC	792,989	400,021	469.0	43	2.2%	2.0%	11.6%	-86.9%
Knoxville, TN	465,361	241,612	289.0	142	Knoxville, TN	504,429	260,418	343.9	32	8.4%	7.8%	19.0%	-77.5%
Chattanooga, TN	275,434	142,697	174.6	96	Chattanooga, TN	289,172	149,013	193.6	8	5.0%	4.4%	10.9%	-91.7%
Asheville, NC	218,891	131,715	218.7	196	Asheville, NC	242,593	144,456	264.5	17	10.8%	9.7%	20.9%	-91.3%
Fayetteville, NC	278,189	131,192	151.8	65	Fayetteville, NC	298,974	141,112	177.3	12	7.5%	7.6%	16.8%	-81.5%
Wilmington, NC	195,198	116,768	105.7	28	Wilmington, NC	199,367	118,938	112.2	8	2.1%	1.9%	6.2%	-71.4%
Johnson City (Washington County)Kingsport (Sullivan County)Elizabethton, TN	187,037	99,134	137.5		Johnson City (Washington County)Kingsport (Sullivan County)Bristol, TN	239,922	126,103	196.8	37	28.3%	27.2%	43.1%	-82.0%
Hickory (Catawba County) LenoirMorganton, NC	153,897	73,891	135.3	193	Hickory (Catawba County) LenoirMorganton, NC	183,635	87,144	180.5	24	19.3%	17.9%	33.5%	-87.6%
Clarksville, TN	130,777	70,008	157.9	54	Clarksville, TN	137,497	73,546	171.5	16	5.1%	5.1%	8.6%	-70.4%
Burlington (Alamance County)- -GrahamMebane (Alamance County), NC	113,952	63,443	77.1		Burlington (Alamance County)- -GrahamMebane (Alamance County), NC	. 116,775	64,798	79.6	13	2.5%	2.1%	3.2%	-78.7%
Greenville, NC	110,391	58,875	52.5	42	Greenville, NC	113,688	60,429	58.0	14	3.0%	2.6%	10.5%	-66.7%

^{*}Population derived from 2010 Census; Housing derived from Master Address File – NOT ENUMERATED 2020 CENSUS COUNTS

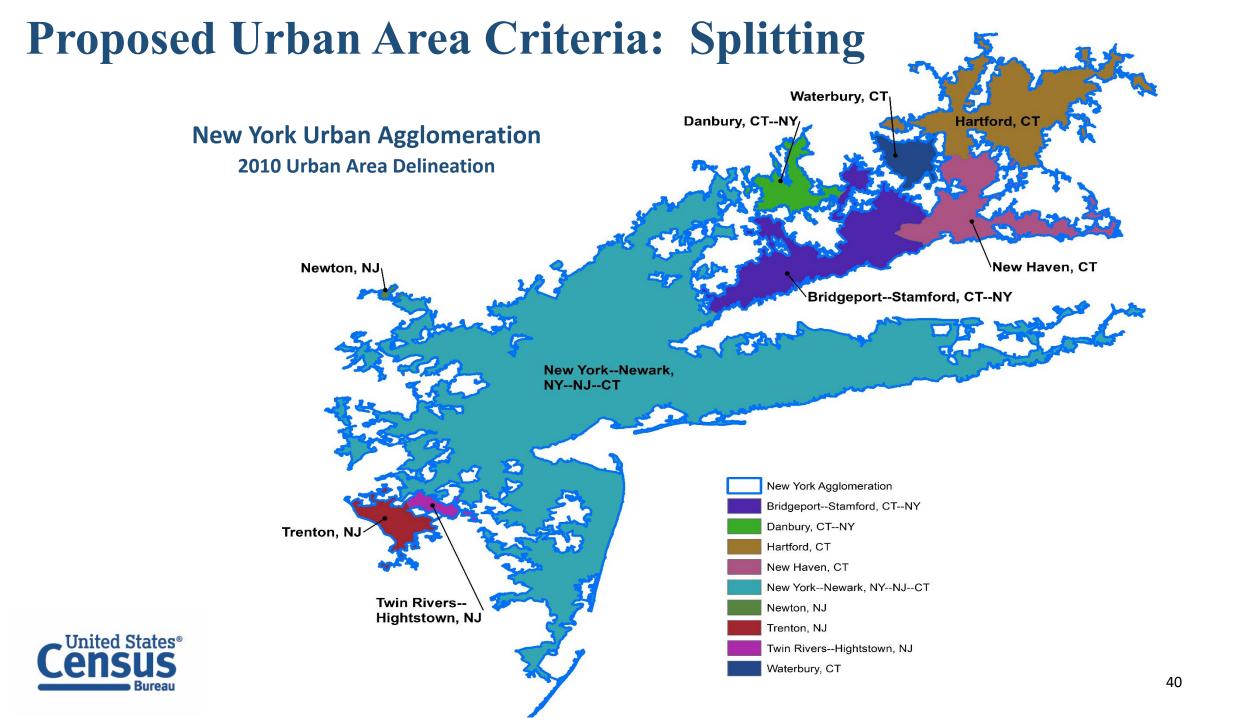
Density Composition

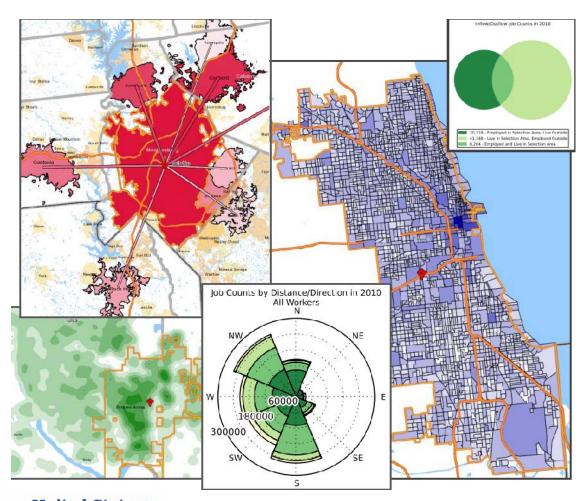
<2	13			213 to	427		ı	427 to	1280			1280	0+		
BLOCKS PO	P HU	J LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	UA_NAME
32.8% 61.4 9	6 3.2%	95.8%	3.1%	2.1%	7.7%	1.6%	5.5%	3.2%	7.3%	0.5%	58.6%	33.3%	81.8%	2.1%	Kinross, MI
70.1% 55.1 9	6 0.3%	70.9%	3.0%	5.7%	12.8%	11.0%	6.0%	14.9%	32.2%	12.8%	20.9%	24.2%	54.8%	5.4%	Twentynine Palms North, CA
16.7% 51.5 9	6 0.2%	39.0%	5.5%	0.9%	0.6%	1.9%	25.8%	25.7%	17.8%	24.2%	52.0%	21.9%	81.4%	34.9%	Florence East, AZ
23.6% 47.0 9	6 2.4%	46.6%	7.9%	5.3%	8.3%	16.7%	24.9%	12.8%	22.5%	17.5%	43.7%	35.0%	66.8%	19.2%	Ionia, MI
21.9% 46.6 9	6 2.1%	41.0%	12.3%	10.0%	17.4%	30.0%	26.2%	14.4%	25.9%	17.1%	39.6%	29.0%	54.6%	11.9%	Gatesville, TX
37.9% 46.2 9	6 0.3%	79.3%	0.8%	0.1%	0.1%	0.1%	21.8%	8.5%	16.6%	7.0%	39.5%	45.3%	83.1%	13.6%	Grissom AFB (Miami County), IN
39.8% 45.0 9	6 1.1%	24.3%	16.7%	13.0%	25.5%	39.1%	26.9%	35.6%	51.4%	31.4%	16.7%	6.4%	21.9%	5.2%	Dahlonega, GA
31.5% 44.7 9	6 15.5%	77.6%	10.2%	14.5%	19.0%	11.4%	29.6%	27.3%	37.6%	9.1%	28.7%	13.4%	27.9%	1.9%	Farmville (Prince Edward County), VA
17.2% 44.59	4.2 %	45.0%	3.9%	3.1%	3.4%	11.2%	15.6%	12.2%	18.4%	22.2%	63.3%	40.2%	74.0%	21.6%	KutztownKutztown University, PA
33.3% 43.7 9	<mark>6</mark> 21.5%	73.7%	12.7%	17.4%	21.9%	17.3%	19.8%	13.8%	18.5%	5.4%	34.1%	25.1%	38.1%	3.6%	Morehead, KY
27.5% 43.4 9	6 2.7%	36.5%	10.1%	9.8%	15.9%	23.4%	29.0%	28.4%	51.8%	33.5%	33.3%	18.3%	29.6%	6.7%	Coxsackie, NY
27.5% 42.8 9	6 5.9%	78.5%	5.3%	9.8%	17.3%	9.3%	32.2%	22.1%	34.3%	7.9%	35.1%	25.4%	42.5%	4.3%	Kenedy, TX
27.2% 42.0 9	6 9.5%	54.9%	3.3%	0.6%	0.8%	1.8%	27.2%	27.3%	31.1%	25.3%	42.4%	30.0%	58.6%	18.0%	Canton, NY
13.8% 39.8 9	6 0.8%	16.7%	16.3%	11.5%	13.6%	33.0%	33.8%	19.0%	31.9%	31.0%	36.3%	29.8%	53.7%	19.3%	Collins, NY
14.1% 39.39	6 3.1%	35.0%	5.1%	7.7%	11.0%	30.3%	20.4%	12.6%	17.1%	20.2%	60.4%	40.4%	68.9%	14.5%	Huntingdon, PA
24.6% 39.1 9	6 1.9%	33.6%	10.0%	6.6%	9.3%	24.3%	25.7%	14.7%	20.7%	16.4%	39.6%	39.7%	68.1%	25.8%	Colorado City, TX
42.7% 38.3 9	6 3.7%	23.1%	14.5%	18.5%	27.9%	45.4%	26.4%	22.4%	33.3%	24.9%	16.4%	20.8%	35.2%	6.5%	Pembroke, NC
32.3% 37.3 9	6 7.7%	35.9%	24.2%	22.5%	29.3%	38.0%	29.0%	15.6%	31.3%	20.5%	14.5%	24.6%	31.6%	5.6%	Storrs, CT
23.2% 36.5 9	6 0.8%	22.9%	8.1%	14.0%	21.0%	33.7%	22.7%	24.0%	37.7%	33.7%	45.9%	25.5%	40.4%	9.6%	Chester, IL
42.9% 35.5 9	6 1.9%	40.1%	9.8%	14.6%	21.4%	29.0%	24.3%	27.3%	37.8%	23.9%	23.0%	22.6%	39.0%	7.0%	Fort Leonard Wood, MO

Density Composition

	<213					427 to	1280			1280)+					
BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	UA_NAME
14.5%	2.6%	2.1%	6.3%	54.5%	64.6%	64.5%	71.7%	26.8%	27.3%	28.7%	21.2%	4.1%	5.5%	4.7%	0.7%	Middleburg, FL
13.4%	3.6%	2.9%	9.2%	42.9%	55.3%	50.0%	69.6%	30.4%	28.0%	29.2%	18.4%	13.4%	13.1%	17.9%	2.9%	Ridgefield, CT
12.5%	1.2%	1.1%	7.2%	48.8%	52.9%	50.7%	61.9%	37.5%	45.3%	47.2%	30.7%	1.3%	0.6%	1.0%	0.2%	Wales, WI
10.6%	1.6%	1.4%	7.8%	33.3%	50.1%	55.5%	73.9%	42.3%	40.7%	34.8%	16.5%	13.8%	7.5%	8.2%	1.8%	North Windham, ME
39.0%	10.0%	6.4%	40.0%	27.2%	47.8%	52.9%	46.5%	22.8%	30.7%	28.6%	12.2%	11.0%	11.5%	12.2%	1.3%	Ellijay, GA
17.6%	0.0%	0.0%	12.0%	19.6%	47.1%	46.2%	65.0%	35.3%	29.5%	29.4%	17.4%	27.5%	23.4%	24.3%	5.6%	Altavista, VA
11.2%	2.9%	3.1%	17.1%	23.5%	46.3%	46.0%	61.7%	43.9%	34.3%	32.6%	18.3%	21.4%	16.6%	18.3%	3.0%	Antwerp, MI
0.0%	0.0%	0.0%	0.0%	33.3%	45.4%	45.6%	66.6%	37.0%	44.0%	43.5%	31.2%	29.6%	10.6%	10.9%	2.2%	, GA
10.7%	2.0%	2.0%	5.7%	28.0%	44.9%	45.3%	66.5%	25.3%	33.7%	31.6%	22.4%	36.0%	19.3%	21.2%	5.5%	Richland, MI
27.6%	8.1%	6.7%	24.1%	25.3%	43.7%	40.8%	55.0%	34.5%	40.2%	40.8%	20.0%	12.6%	8.0%	11.6%	0.9%	DeerfieldSouth Deerfield, MA
10.6%	0.9%	0.3%	3.7%	28.2%	42.7%	41.6%	72.1%	24.7%	16.6%	16.8%	14.3%	36.5%	39.8%	41.3%	9.8%	Stafford Springs, CT
42.2%	17.4%	12.7%	40.3%	16.4%	41.8%	44.0%	45.2%	26.9%	28.1%	27.5%	12.8%	14.5%	12.6%	15.8%	1.7%	North WilkesboroWilkesboro, NC
32.7%	2.8%	0.7%	13.2%	18.6%	41.4%	42.0%	53.8%	40.4%	48.0%	48.4%	31.0%	8.3%	7.7%	8.9%	2.0%	Jefferson, GA
23.3%	0.0%	0.0%	2.1%	14.0%	40.9%	40.0%	76.5%	16.3%	25.9%	22.6%	16.5%	46.5%	33.2%	37.4%	4.9%	Carrollton, VA
26.7%	10.4%	9.5%	29.8%	11.7%	40.8%	41.2%	46.6%	25.8%	29.9%	31.7%	19.9%	35.8%	18.8%	17.6%	3.7%	Mont Belvieu (Chambers County), TX
16.1%	8.7%	6.2%	27.3%	24.7%	40.6%	39.8%	50.0%	30.1%	30.3%	35.5%	19.6%	29.0%	20.4%	18.5%	3.2%	Boothbay Harbor, ME
23.7%	6.3%	4.4%	16.0%	15.8%	39.8%	38.7%	58.0%	41.7%	38.1%	37.7%	22.0%	18.7%	15.8%	19.2%	4.0%	Ozark, AL
23.7%	15.6%	10.9%	37.9%	8.6%	39.8%	37.7%	49.8%	18.3%	17.9%	17.9%	8.4%	49.5%	26.7%	33.5%	3.9%	Leonardtown, MD
24.0%	5.9%	4.8%	23.0%	17.7%	38.9%	37.2%	51.7%	29.9%	32.0%	32.9%	20.4%	28.4%	23.2%	25.0%	4.9%	Breaux Bridge, LA
16.8%	2.6%	1.7%	28.2%	12.8%	38.7%	27.0%	37.9%	29.6%	45.8%	45.3%	27.7%	40.7%	12.9%	26.0%	6.2%	Hampstead, NC

Density Composition


	<213				213 to	427			427 to	1280			1280)+		
BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	UA_NAME
2.0%	0.7%	0.3%	1.2%	2.0%	0.5%	0.3%	1.2%	87.8%	90.6%	88.3%	91.9%	8.2%	8.2%	11.1%	5.7%	San Diego Country Estates, CA
5.8%	0.5%	0.4%	4.8%	10.3%	7.0%	9.0%	20.6%	72.0%	76.6%	74.3%	66.7%	11.9%	15.9%	16.3%	7.9%	Ocean Shores, WA
2.4%	0.0%	0.0%	2.8%	13.1%	16.7%	16.6%	28.5%	75.0%	76.6 %	76.5%	66.4%	9.5%	6.7%	6.8%	2.4%	Johnson Lane, NV
8.6%	0.1%	0.1%	2.5%	12.1%	14.3%	14.8%	26.9%	63.8%	75.8 %	74.4%	67.2%	15.5%	9.8%	10.7%	3.3%	Tellico Village, TN
4.4%	0.8%	0.2%	2.1%	11.1%	9.3%	10.9%	20.9%	56.7%	75.5 %	72.8%	71.0%	27.8%	14.4%	16.0%	6.0%	Rio Verde, AZ
5.8%	0.0%	0.0%	0.5%	1.7%	4.1%	3.9%	9.1%	57.9%	74.4%	76.9%	78.4%	34.7%	21.5%	19.2%	12.1%	Lake Monticello, VA
7.2%	0.2%	0.0%	0.9%	24.1%	16.9%	17.0%	37.1%	54.2%	70.9%	69.9%	58.0%	14.5%	12.0%	13.0%	4.0%	Milton, VT
31.7%	6.0%	1.8%	24.5%	12.8%	9.7%	9.3%	17.7%	41.5%	70.4%	71.9%	54.6%	14.0%	14.0%	17.0%	3.2%	Jackson, GA
38.6%	1.0%	0.7%	8.1%	9.9%	18.9%	18.6%	31.6%	42.6%	70.0%	71.1%	56.3%	8.9%	10.1%	9.6%	4.0%	Wind Lake, WI
15.4%	2.7%	2.1%	30.8%	15.4%	17.2%	16.5%	24.5%	56.0%	66.0%	65.8%	41.3%	13.1%	14.1%	15.6%	3.4%	Fairfield Glade, TN
23.7%	2.4%	1.6%	28.2%	13.2%	15.7%	14.9%	22.5%	43.2%	64.6%	65.7%	44.5%	20.0%	17.3%	17.9%	4.8%	Portland (Sumner County), TNKY
0.0%	0.0%	0.0%	0.0%	26.3%	14.9%	8.1%	26.0%	47.4%	64.3%	63.6%	70.0%	26.3%	20.7%	28.3%	4.0%	, CA
25.9%	4.9%	3.2%	19.6%	17.7%	18.1%	17.5%	29.4%	52.4%	63.7%	59.9%	46.3%	4.1%	13.2%	19.4%	4.7%	Lago Vista (Travis County), TX
16.7%	1.2%	0.2%	4.1%	11.1%	7.4%	4.5%	11.1%	38.9%	63.3%	61.7%	78.8%	33.3%	28.1%	33.5%	6.0%	Snowmass Village, CO
8.7%	6.2%	2.2%	21.3%	8.7%	10.0%	9.3%	17.8%	67.4%	62.8%	66.7%	53.8%	15.2%	21.1%	21.8%	7.0%	HayesHarrison, MI
20.5%	3.4%	2.6%	20.1%	14.8%	15.7%	17.0%	28.7%	51.6%	61.5%	63.1%	45.3%	13.2%	19.4%	17.3%	5.8%	Gun Barrel City, TX
28.0%	0.9%	1.0%	6.9%	9.8%	20.2%	14.0%	30.5%	36.6%	61.0%	59.0%	52.0%	25.6%	17.8%	26.0%	10.6%	Seabrook IslandKiawah Island, SC
7.4%	1.3%	0.5%	2.7%	11.7%	15.9%	12.5%	25.4%	55.3%	60.8%	60.7%	61.7%	25.5%	22.0%	26.4%	10.1%	Blowing Rock (Watauga County), NC
29.4%	3.4%	2.1%	21.4%	10.9%	14.7%	10.2%	20.7%	32.3%	60.3%	55.6%	49.0%	27.4%	21.5%	32.1%	8.8%	Elkton, VA
11.2%	1.3%	1.1%	25.0%	5.6%	11.4%	11.4%	20.1%	47.7%	60.3%	60.2%	47.3%	35.5%	27.0%	27.4%	7.6%	Smithfield, VA


Density Composition

	<213					127 to 1	L280			1280)+					
BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	BLOCKS	POP	HU	LAND	UA_NAME
5.5%	0.0%	0.0%	3.7%	0.0%	0.0%	0.0%	0.0%	1.8%	0.2%	0.1%	0.3%	92.7%	99.8%	99.9%	96.0%	Riviera Beach, FL
16.7%	0.0%	0.0%	13.8%	2.4%	0.2%	0.1%	0.9%	4.8%	1.4%	1.6%	3.7%	76.2%	98.4%	98.3%	81.7%	Mecca, CA
12.6%	0.1%	0.0%	35.1%	2.3%	0.5%	0.5%	5.4%	6.9%	3.7%	2.6%	10.4%	78.2%	95.7%	96.9%	49.0%	Key Biscayne, FL
16.6%	0.9%	0.5%	41.4%	3.6%	1.2%	1.0%	5.0%	5.8%	3.8%	3.7%	5.7%	74.0%	94.1%	94.7%	47.8%	Patterson, CA
5.4%	0.2%	0.0%	13.9%	1.4%	0.8%	0.6%	11.3%	8.2%	5.3%	3.2%	21.7%	85.0%	93.7%	96.1%	53.1%	Mahanoy City, PA
9.0%	0.2%	0.1%	3.5%	0.6%	0.1%	0.0%	0.2%	3.1%	6.2%	6.3%	14.4%	87.2%	93.5%	93.6%	81.9%	Long BeachNorth Beach Haven, NJ
20.9%	0.4%	0.3%	23.2%	1.5%	1.2%	1.2%	4.7%	9.7%	4.9%	4.5%	10.2%	67.9%	93.5%	94.0%	62.0%	Orange Cove, CA
16.5%	0.3%	0.1%	20.2%	1.6%	0.9%	0.7%	3.6%	6.0%	5.4%	5.0%	12.9%	75.9%	93.4%	94.3%	63.3%	Wasco, CA
12.8%	0.6%	0.0%	16.2%	0.6%	0.1%	0.1%	1.0%	7.3%	6.2%	6.8%	16.1%	79.3%	93.1%	93.0%	66.8%	Arvin, CA
15.0%	0.6%	0.4%	16.7%	1.9%	0.4%	0.2%	1.0%	3.8%	5.9%	5.8%	11.0%	79.4%	93.1%	93.7%	71.2%	Newman, CA
8.3%	1.7%	1.5%	37.9%	2.9%	3.2%	2.9%	21.6%	3.6%	2.1%	1.5%	4.2%	85.2%	93.0%	94.1%	36.3%	Tamaqua, PA
8.1%	0.2%	0.1%	8.5%	0.8%	0.1%	0.2%	1.7%	6.5%	6.9%	6.2%	20.7%	84.7%	92.8%	93.5%	69.1%	Parlier, CA
8.7%	0.4%	0.2%	18.9%	1.3%	1.0%	0.8%	3.9%	8.7%	6.0%	5.9%	16.8%	81.3%	92.7%	93.1%	60.3%	Soledad, CA
16.3%	1.2%	0.4%	41.3%	1.7%	0.4%	0.3%	1.5%	6.6%	6.2%	6.0%	11.2%	75.4%	92.2%	93.3%	46.0%	Woodland, CA
17.6%	2.2%	0.3%	34.5%	1.3%	1.0%	1.0%	4.5%	5.3%	4.9%	4.7%	10.2%	75.8%	91.9%	94.0%	50.8%	Delano, CA
43.2%	2.0%	1.3%	41.9%	1.1%	0.2%	0.0%	0.2%	4.2%	6.0%	5.8%	9.8%	51.6%	91.8%	92.9%	48.1%	Buellton, CA
15.0%	0.5%	0.3%	17.0%	4.1%	1.5%	1.2%	8.0%	7.1%	6.6%	7.9%	21.0%	73.8%	91.3%	90.6%	54.0%	Santa Paula, CA
12.1%	0.7%	0.3%	22.0%	1.8%	2.3%	2.6%	12.0%	7.2%	6.1%	5.5%	9.7%	78.9%	90.9%	91.7%	56.3%	ReedleyDinuba, CA
26.1%	1.3%	0.3%	30.4%	3.3%	2.4%	1.2%	9.4%	8.9%	5.5%	3.5%	9.7%	61.7%	90.8%	95.1%	50.5%	Mammoth Lakes, CA
17.1%	1.1%	0.5%	30.3%	2.1%	1.6%	1.6%	8.2%	7.0%	6.5%	6.2%	12.0%	73.8%	90.7%	91.7%	49.5%	Modesto, CA

Utilization of Longitudinal Employer-Household Dynamics (LEHD) data

OD

Filename of the OD datasets are described by the following templates [ST] od [PART] [TYPE] [YEAR].csv.gz where

[ST] = lowercase, 2-letter postal code for a chosen state

[PART] = Part of the state file, can have a value of either "main" or "aux". Complimentary parts of the state file, the main part includes jobs with both workplace and residence in the state and the aux part includes jobs with the workplace in the state and the residence outside of the state.

[TYPE] = Job Type, can have a value of "JT00" for All Jobs, "JT01" for Primary Jobs, "JT02" for All Private Jobs, "JT03" for Private Primary Jobs, "JT04" for All Federal Jobs, or "JT05" for Federal Primary Jobs.

[YEAR] = Year of job data. Can have the value of 2002-2018 for most states.

As an example the main OD file of Primary Jobs in 2007 for California would be the file: ca od main JT01 2007.csv.gz

The structure of the OD files is as follows:

	Origin-Destination (OD) File Structure									
Pos	Variable	Type	Explanation							
1	w_geocode	Char15	Workplace Census Block Code							
2	h_geocode	Char15	Residence Census Block Code							
3	S000	Num	Total number of jobs							
4	SA01	Num	Number of jobs of workers age 29 or younger ¹⁷							
5	SA02	Num	Number of jobs for workers age 30 to 54 ¹⁷							
6	SA03	Num	Number of jobs for workers age 55 or older ¹⁷							
7	SE01	Num	Number of jobs with earnings \$1250/month or less							
8	SE02	Num	Number of jobs with earnings \$1251/month to \$3333/month							
9	SE03	Num	Number of jobs with earnings greater than \$3333/month							
10	SI01	Num	Number of jobs in Goods Producing industry sectors							
11	SI02	Num	Number of jobs in Trade, Transportation, and Utilities industry sectors							
12	SI03	Num	Number of jobs in All Other Services industry sectors							
13	createdate	Char	Date on which data was created, formatted as YYYYMMDD							

LEHD Origin-Destination Employment Statistics (LODES) Dataset Structure (V 7.5) https://lehd.ces.census.gov/data/

Two-step process for accepting or adjusting 2010 split boundaries

Step One:

Conduct analysis of the new 2020 UAs using the 2010 UA splits

- Measure aggregate commuter flows into and out of each UA
- Upon qualification, the UA split boundaries are further analyzed in Step Two

Step Two:

Conduct block-level analysis of the commuter flows

- Using the LEHD data, apply the Leiden Community Detection Algorithm to identify natural partitions, or communities
- Split boundaries are then adjusted to match the nearest LEHD Origin-Destination Community

Step One. Conduct analysis of the new 2020 UAs using the 2010 UA splits

Where do Avondale Residents work?	Flows	Percent
PhoenixMesa, AZ	80,034	83.5%
AvondaleGoodyear, AZ	11,110	11.6%
Tucson, AZ	1,473	1.5%
Buckeye, AZ	1,404	1.5%

Where do Washington Residents work?	Flows	Percent
Washington, DCVAMD	1,854,172	88.1%
Baltimore, MD	120,178	5.7%
Richmond, VA	26,252	1.2%
Virginia Beach, VA	16,304	0.8%

Where do Avondale Workers live?	Flows	Percent
PhoenixMesa, AZ	20,124	57.0%
AvondaleGoodyear, AZ	11,110	31.4%
Buckeye, AZ	856	2.4%
Tucson, AZ	712	2.0%

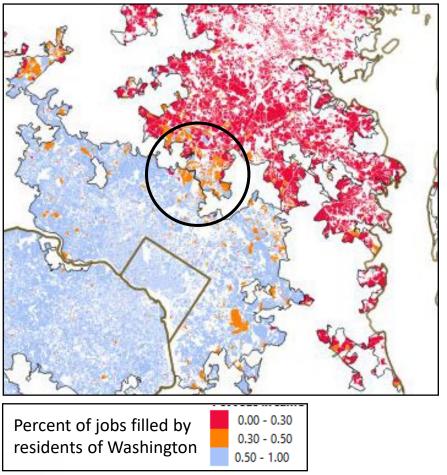
Where do Washington Workers live?	Flows	Percent
Washington, DCVAMD	1,854,172	81.6%
Baltimore, MD	149,564	6.6%
Waldorf, MD	28,690	1.3%
Virginia Beach, VA	25,987	1.1%

2018 LEHD Origin-Destination Employment Statistics (LODES) data

Step Two. Conduct block-level analysis of the commuter flows

- Using the LEHD data, apply the *Leiden Community Detection Algorithm* to identify natural partitions, or communities
- Split boundaries are then adjusted to match the nearest *LEHD Origin-Destination Community*

Literature related to Leiden Community Detection Algorithm:


Thomas, I., A. Adam, and A. Verhetsel. "Migration and commuting interactions fields: a new geography with community detection algorithm?" *Belgeo*, **4**, 2017, pp. 1-17.

Traag, V., L. Waltman and N.J. van Eck. "From Louvain to Leiden: guaranteeing well connected communities." *Scientific Reports*, **9**, pp. 1-12.

Stefanouli, M. and S. Polyzos. "Analysis of commuting in Attica: The Attica commuting network." *Journal of Land Use, Mobility and Environment*, **Vol. 13, n. 1**, 2020, pp. 21-40.

Where do Washington Residents work?

Where do Washington Workers live?

2018 LEHD Origin-Destination Employment Statistics (LODES) data

SCIENTIFIC REPORTS

From Louvain to Leiden: guaranteeing well-connected communities

V. A. Traag , L. Waltman & N. J. van Eck

Traag, V., L. Waltman and N.J. van Eck. "From Louvain to Leiden: guaranteeing well connected communities." *Scientific Reports*, **9**, pp. 1-12.

https://www.nature.com/articles/s41598-019-41695-z

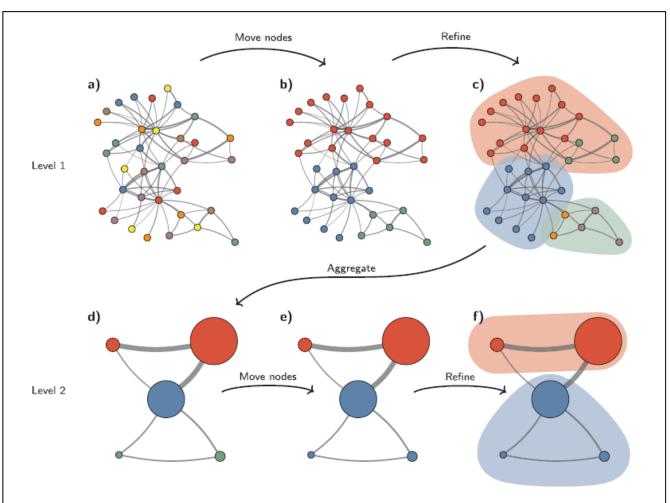
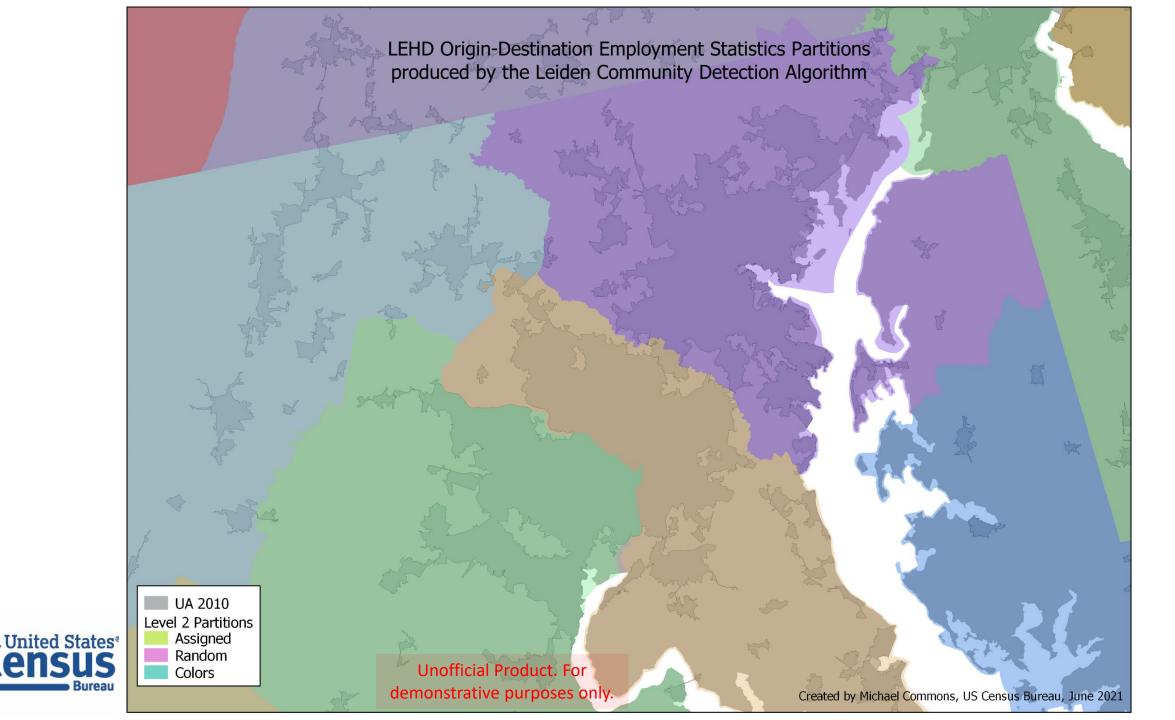
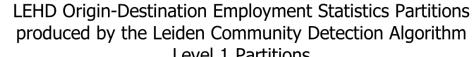
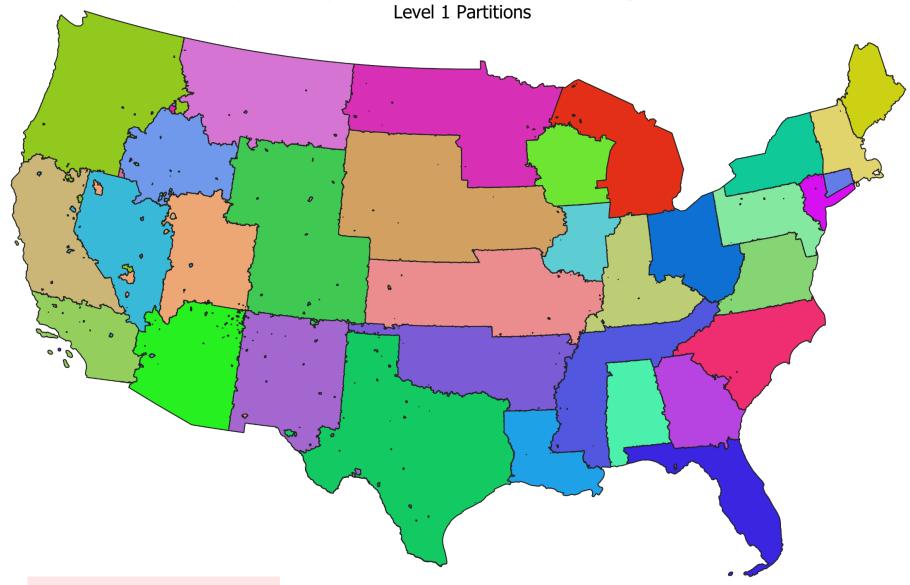
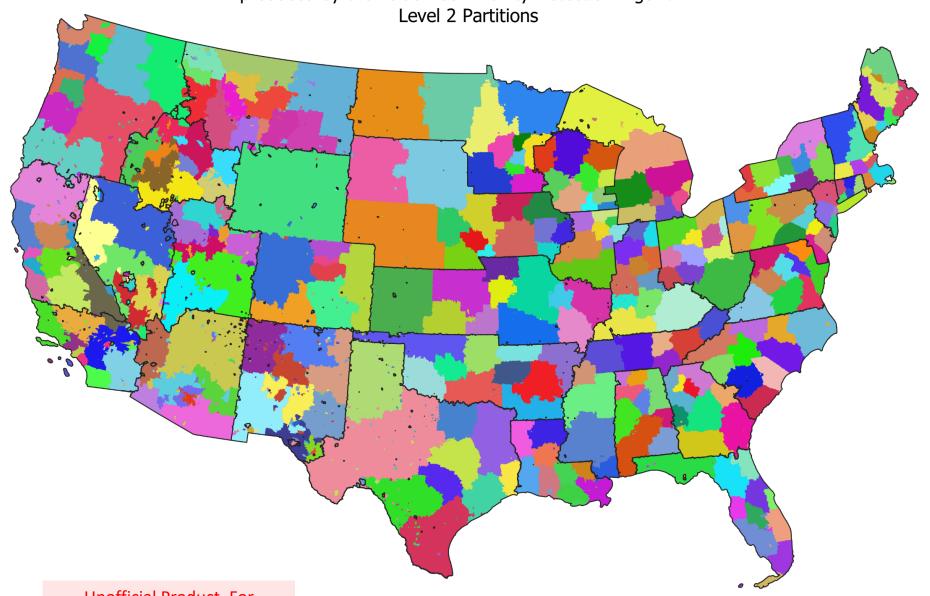





Figure 3. Leiden algorithm. The Leiden algorithm starts from a singleton partition (a). The algorithm moves individual nodes from one community to another to find a partition (b), which is then refined (c). An aggregate network (d) is created based on the refined partition, using the non-refined partition to create an initial partition for the aggregate network. For example, the red community in (b) is refined into two subcommunities in (c), which after aggregation become two separate nodes in (d), both belonging to the same community. The algorithm then moves individual nodes in the aggregate network (e). In this case, refinement does not change the partition (f). These steps are repeated until no further improvements can be made.

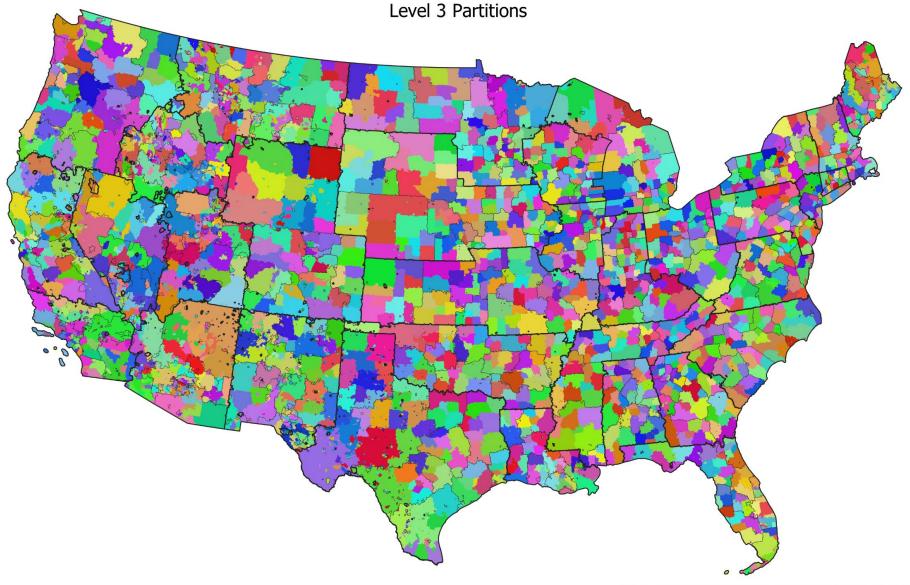


Unofficial Product. For demonstrative purposes only.

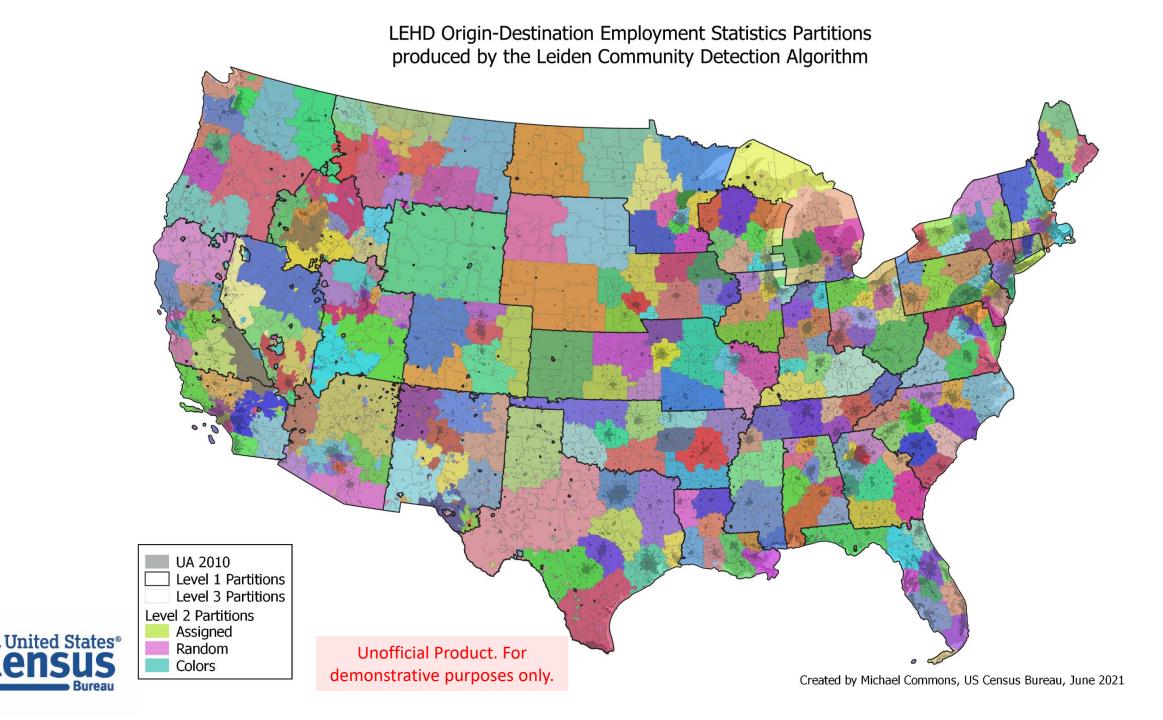
Created by Michael Commons, US Census Bureau, June 2021

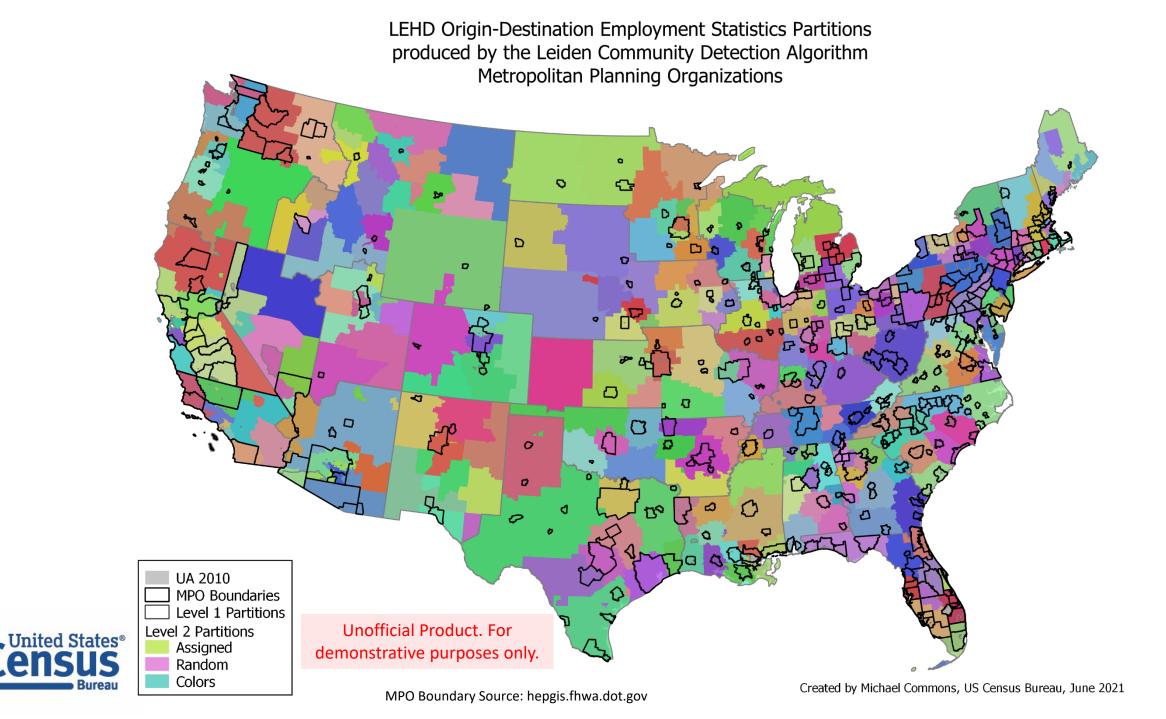
LEHD Origin-Destination Employment Statistics Partitions produced by the Leiden Community Detection Algorithm

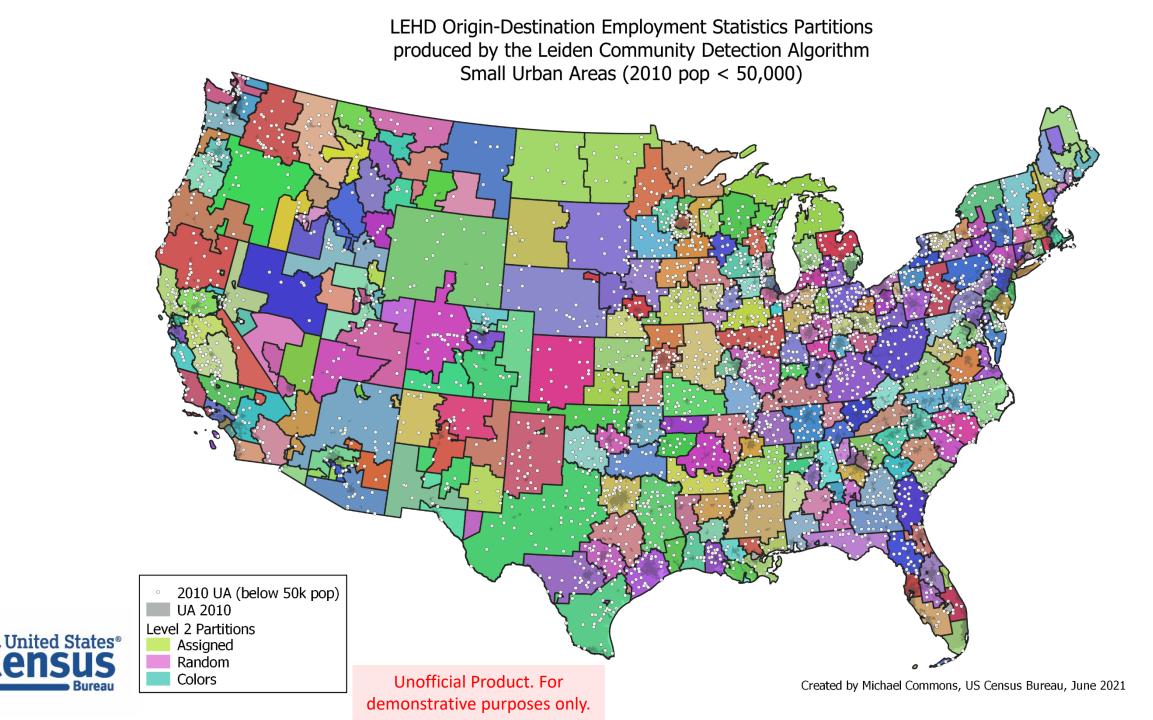
Level 2 Partitions



Unofficial Product. For demonstrative purposes only.


Created by Michael Commons, US Census Bureau, June 2021


LEHD Origin-Destination Employment Statistics Partitions produced by the Leiden Community Detection Algorithm Level 3 Partitions



Created by Michael Commons, US Census Bureau, June 2021

Schedule

Spring 2021	Publish Proposed Urban/Rural Criteria in the Federal Register Notice
Summer 2021	Review comments on Proposed Urban/Rural Criteria published in the Federal Register Notice
Winter 2021-2	Publish Final Urban/Rural Criteria in the Federal Register Notice
Summer 2022	Publish Federal Register Notice announcing qualifying Urban Areas

Contact Us

Send questions and comments to us at geo.urban@census.gov

Proposed Criteria Federal Register Notice:

https://www.federalregister.gov/documents/2021/02/19/2021-03412/urban-areas-for-the-2020-census-proposed-criteria

Census Bureau Urban and Rural page with link to 2020 Proposed Urban Area Criteria Viewer:

https://www.census.gov/programssurveys/geography/guidance/geo-areas/urbanrural.html

